3D printed mechanical Clock with Anchor Escapement

by TheGoofy, published

3D printed mechanical Clock with Anchor Escapement by TheGoofy May 12, 2014


This mechanical clock demonstrates that 3d-printing is not just for decoration. It's possible to create intelligent, living things.

The clock has an anchor escapement, and a balance-wheel with a spiral spring. The clock shows Seconds, Minutes, and Hours. The winding has a nested planetary gear, which allows that the clock continues to run, while winding up.

Everything is 3d-printed (even the spiral spring), except e few small screws, some metal pins, the cord, and the lead for the weight.

This video shows the clock and the building process (actually with a simpler ratchet-winding):


Designed with Blender. PLA printed with Rapman 3.2.

Recent Comments

view all

Do you think that reducing the diameter of the winding weel could be possible in order to give more working timw to the clock? More than 24-36 hours would make it much more functional. Thank you for sharing!!

Hi Cinnabar. Balance wheel and torsion spring are an harmonic oscillator and define the clock speed (http://en.wikipedia.org/wiki/Balance_wheel#Period_of_oscillation). Instead of making the balance wheel lighter, you can also make the spring a bit stronger by making it thicker. As you said, the weight has almost no influence on the ticking speed. The tiny screws in the balance wheel are used for fine-tuning. If a screw is moved closer to the rotation center of the balance wheel, the moment of inertia slightly decreases (http://en.wikipedia.org/wiki/Moment_of_inertia), and the clock ticking speed slightly increases (in my case only a few seconds per hour).

Thank you for this great design. I confess: I love gears! Now I am close to finish. The clock ticks well (nice sound) with version 2 after a lot of sanding and polishing. It appears to me that there is very much potential of friction after the escapement. For me the crucial part is the escapement wheel and the spring. I printed both three times to get them working, but I think I must print the wheel again, because it is to heavy (80% fill) and therefore one minute takes seven seconds more. To my surprise the weight of the bucket doesn't have great influence to the speed. I have nearby one kilogram as small change (yes time is money they say) in the bucket. Less weight makes it barely slower, but less reliable. I think the adjustment screws as you did will not help in this case. This clock is a very nice example what you can do with a 3d-printer. But it also shows that it needs a lot of additional work after printing, that mechanic things like these really work and I can relive, how much work it must have taken to create it. Thanks a lot.

More from 3D Printing

view more

Liked By

view all

Give a Shout Out

If you print this Thing and display it in public proudly give attribution by printing and displaying this tag. Print Thing Tag


STL files cover 3 different winding versions:

  • V1: Ratchet winding small transmission, runs 2-3 hours (weight moves -52.1 cm/h), clock stops while winding
  • V2: Ratchet winding large transmission, runs 8-12 hours (weight moves -14.1 cm/h) very sensitive to friction, clock stops while winding
  • V3: Planetary gear winding medium transmission, runs 3-4.5 hours (weight moves -37.2 cm/h), very sophisticated, extremely sensitive to inaccurate printing, clock continues running while winding
  • The blender file illustrates the 3 versions
  • Files optimized for extrusion printing

Blender File:

  • Contains all the parts, which were exported as STL
  • Has 3 groups to visualize the different versions of the winding
    The file "Parts_with_Dummy.zip" contains STL files with a dummy piece: some pieces have a very thin top end, and it happens (at least on my printer) that the printed layers can't cool down quick enough, and finally the printed piece gets very inaccurate there. With the "dummy" the printer is forced to do some sort of "busy wait", and therefore the printing quality stays constant over the full height.

Rapman 3.2 print settings:

  • PLA, 195C
  • 0.125 mm layers
  • 0.4 mm extrusion width (0.5 mm nozzle)
  • 20% fill density (except balance wheel: 90%)
  • 2 extra skins

Metal and other parts:

  • 11 screws M3 (length: 10mm)
  • 1.5 mm steel axis for balance wheel (length: 39mm)
  • 2.0 mm steel axis for anchor and seconds wheel (length: 27mm, 59mm)
  • 3.0 mm for all other axis (length: 59mm, 59mm, 29mm, 18mm)
  • Axis should have a smooth surface in order to minimize friction
  • Use a drill with 0.1 mm more diameter to adjust the gears bore
  • Make sure you're drilling really centric and perpendicular
  • Cord 2-3m

File Name



Do you think that reducing the diameter of the winding weel could be possible in order to give more working timw to the clock? More than 24-36 hours would make it much more functional. Thank you for sharing!!

Thank you for this great design. I confess: I love gears! Now I am close to finish. The clock ticks well (nice sound) with version 2 after a lot of sanding and polishing. It appears to me that there is very much potential of friction after the escapement. For me the crucial part is the escapement wheel and the spring. I printed both three times to get them working, but I think I must print the wheel again, because it is to heavy (80% fill) and therefore one minute takes seven seconds more. To my surprise the weight of the bucket doesn't have great influence to the speed. I have nearby one kilogram as small change (yes time is money they say) in the bucket. Less weight makes it barely slower, but less reliable. I think the adjustment screws as you did will not help in this case. This clock is a very nice example what you can do with a 3d-printer. But it also shows that it needs a lot of additional work after printing, that mechanic things like these really work and I can relive, how much work it must have taken to create it. Thanks a lot.

Apr 9, 2015 - Modified Apr 9, 2015
TheGoofy - in reply to cinnabar

Hi Cinnabar. Balance wheel and torsion spring are an harmonic oscillator and define the clock speed (http://en.wikipedia.org/wiki/Balance_wheel#Period_of_oscillation). Instead of making the balance wheel lighter, you can also make the spring a bit stronger by making it thicker. As you said, the weight has almost no influence on the ticking speed. The tiny screws in the balance wheel are used for fine-tuning. If a screw is moved closer to the rotation center of the balance wheel, the moment of inertia slightly decreases (http://en.wikipedia.org/wiki/Moment_of_inertia), and the clock ticking speed slightly increases (in my case only a few seconds per hour).

Thanks for the design, I really love it. I am having an issue though, where the clock only does 2-3 ticks each time I move the balance wheel and then stops. In the video yours seems to start on its own and run indefinitely. Any ideas why I am experiencing this problem?

Awesome tip! The balance wheel has a lot of play against the escapement spring hex connection. I made them fit tight with some aluminum foil and now it tics beautifully! Thank you! I am working on time accuracy now by finding the perfect weight on the balance wheel.

Love your project!

Hi, I printed the clock but I am having some problems. Looks like the escapement spring stays inside the "u" shaped end of the escapement anchor making the clock run super fast leaving the escapement balance wheel still. Any ideas on how to fix this? Thank you! http://youtu.be/pFQuKleUmKw

The balance-wheel and the "jewel pin" need to be connected. The printed hairspring has a pentagonal hole, and the balance-wheel has a pentagonal bolt - they need to fit tightly together. Here is a nice video explaining the mechanism: https://www.youtube.com/watch?v=cZwq1KL4SD0#t=382

What a fantastic design. Looking through the comments and instructions I'm not sure what is needed. I have a Velleman K8200 using 3mm PLA. and have printed down to 0.2 mm / layer Has anyone experience of using this machine to make this design?


Can you scale this? Or will that affect its ability to keep time?

So from what i gather V3 (planetary winding) uses the same winding gear transmition as V2, and the size and number of teeth are identivcal between V2 and v3, so why has V3 got such poor performance?

Could it be an issue with the blender file that the V2 transmition isnt showing in the V3 "file setup" on the right hand side?

The planetary gear uses the V1 transmission. You're right, this transmission gear is not illustrated in the explosion picture - sorry, I didn't realize that (luckily the STL-file is there).

I see the V2 parts in both the Blender file and in the STL files available for download. But you have a V3 that runs while winding? (My ultimate goal is to design a contraption that automatically rewinds and run-while-wind would be awesome here!). I'm not seeing the V3 parts available??

V3 ist the winding with the planetary gear. Downloadable STL-Thing-Files start all with "Winding_Planet_Xxx". In the blender-file the planetary winding parts are also present (just invisible for 3d-rendering).

Hi, i've just finished to assembly your clock and it works at the first time. I've printed the face hands and the tickmarks in fluo pla so they glow in the dark XD. Thank you so much for sharing this project, amazing

Hey, I started printing your clock today! I got only one question, did you put some extra weight into the weight bucket or is it empty? Best regards, Jetpilot212

Fill the bucket with as much scrap metal as possible! For my clock the weight is over 1kg.

Thank you very much for your answer.

This design is very inspiring! Thank you! I was wondering if you could comment on your use of Blender. As I survey the available 3d modeling tools out there, I continually read things such as the following quote from http://hackaday.com/2014/01/08/3d-printering-making-a-thing-with-blender-part-ii/: "If you want to make precise mechanical parts, don’t use Blender. Blender is a tool for organic and sculptural forms. Want to print out a plastic tree? Blender is a great tool. Want to model some Greek and Roman statuaries? Blender is a great tool. Need a part for a mechanical device? Don’t use Blender. It’s not the right tool for the job."

What do you think? Did you use other scripts/tools to generate the gears and Blender simply to put it all together visually?

I was initially using Blender for rendering nice images much before I started with 3d-Printing. Already then I had the same impression like your comment above - for accurate geometric constructions, Blender is painful to use. However I was able to figure out keyboard-shortcuts in Blender to translate, rotate, or scale elements very accurately with numeric values. With increasing practice Blender became quite efficient for me. In addition extrusion-printing isn't very accurate either: it's not possible to print convex sharp corners, or thin structures with a well defined size - after printing the first prototype gears, Blender was good enough to stretch and bend the construction, and try printing again. And I was using Blender for designing that clock, because I didn't master no other 3d-modelling tool as efficient as Blender.

The thing I really hate about Blender is not related with accuracy: the software has bugs, if you do boolean operations (e.g. cut a cylindric hole into a cube) - the generated triangle mesh has sometimes tiny holes, degenerated, or unconnected triangles. The mistakes are extremely difficult to identify and fix. Any further boolean operation or 3d-printing software can't handle such a faulty mesh. If Blender is used for rendering only, this bugs are not as relevant, because small degenerated holes in the triangle mesh are not visible.

Currently I'm experimenting with 123D Design - very painful, because I'm again novice ;-). Let me know about your evaluation of modelling tools. I would be curious, how long it takes for different tools until you are an advanced, efficient user.

I've been using OpenSCAD for simple parts, but am currently experimenting with FreeCAD for doing more complex designs. It is fully parametric, as demonstrated by this short YouTube video: https://www.youtube.com/watch?v=KvHJdNfl0TU

123D Design seemed a bit too basic when I briefly checked it out. Fusion 360 looks interesting too, and it is free for non-commercial hobby use.

Really thank you TheGoofy for this amazing project!!! I felt in love with it and printed all the parts night and day... and now I have all the parts assembled following your video (very usefull indeed)

Unfortunately the ecapement balance wheel does only two or three movements and then stops. From your video I can see it evem starts automatically after charging. How it works for you? Looking carefully the video I can also see that your ecapement balance wheel has something like screws added. Are there for increasing the balancing? Could you explain better?

I can also add that all my wheels are able to turn freely on their axis (spinning them with my fingers they turn for long time)

Many many thanks and Happy new Year! Gianluca

Hi Gianluca. The tiny screws in the balance wheel are only adjusting the ticking speed. They don't have a relevant if the clock runs or not. Watch this video: https://www.youtube.com/watch?v=cZwq1KL4SD0 - scroll to 6:10. I recommend to test your printed clock like the explanations from the video. Cheers, Christoph

I know you must have heard it a thousand times, but I have to say, Superb! I assembled mechanical clock kits with my father as a child, it was a rich learning and bonding experience. Seeing your project excites me tremendously since it brings those old kits into the 3d printing world where the opportunities for learning, experimenting and bonding explode!

I have fantasies about attaching a solar powered gear motor to drive the weight lift, perhaps someday there can be a solar/mechanical clock!

Instructions! I never read those.......

Now I see, there are two versions, which one is best? I have printed both

The instructions (http://www.thingiverse.com/thing:328569/#instructions) explain the 3 different versions a little. I recommend V1 as initial construction, and the planetary gear if you'd like a really fancy clock (advanced).

3D printed mechanical Clock with Anchor Escapement

Am I missing something? Where does the winding planet, 4 small gear and roller bearing fit in? I can only see one large drum attached to the ratchet.

I'm almost done printing all the pieces and only have the frame pieces left. However, I'm having issues printing the front frame. One of the two towers keeps breaking off the main part of the frame. I can't really see why it's happening. The dummy piece seems to be doing it's part by allowing for proper cooling and my nozzle height in relation to the build seems good too. Maybe I need to slow it down? Would love any advice!

One of the towers of the front panel is curved and your printer needs proper setup. Set Layer time to 20 seconds at least at heavy cooling with PLA. Use the file inside the zip with the dummy part. This keeps the printer busy for additional cooling time. I am able to slice it with skeinforge and cura with no problem and the results are very similar except better infill with cura. You might want to check your setup with this thing: http://www.thingiverse.com/thing:8757

Hollow Calibration Pyramid

Can anyone offer advice for printing the gears, the big ones are fine, but the ones with small diameter, long stubs on, are really tricky, the PLA does not have time to chill between layers and I am just getting a gooy mess on the top of them, tried a small fan but doesn't seem to help, anyone have a neat way of stopping this? Printing PLA at 0.2mm/layer, 190 C, 8mm/s., thanks

I am done printing the complete clock with PLA at 0.2mm/layer, 185C and 50mm/s without any problems. I was able to print front and back of the clock in one go on my Mendel90.

Only drawback is the clock hands are a little bit to wide to snug on tight to the wheel axis, they don't sit tight on their own and I do not want to glue them in place as it would be impossible to disassemble to clock.

Another thing I needed to do is to cut away about 0.5 mm from the back of the clock face background as this pattern got messed up while printing the first layer. As its not seen when hung to the wall I simply copped it off.

I used nails as axis but did not try the v2 or v3 variant as I fear the friction will make movement impossible.

The spring tends to bend sideways so it keeps touching the seconds gear with a scratching sound. Lets see if I can fix it.

Hi Tom. In my thing-files you can find "Parts_with_Dummy.zip". Did you try that? I had a similar problem like you described, so I've added a secondary dummy object for the small gears, which slows down the printing process, and helps to cool down.

Just about the best thing here. Love it.. Thank you.

If printing some parts (I'm thinking escapement wheel) using slic3r doesn't go too well, try disabling 'detect thin walls' under the 'layers and perimeter' section. Did the trick for me.

By far one of the most interesting things to print :-D Thank you for charing.

Would it be possible to reduce winding barrel in order to reach a larger time running clock? What is the period and actual diameter of this wheel?

Hi, I have printed everything out and watched the YouTube video but I can not find any instructions for putting the clock together - ie which part goes where when. Are there written instructions anywhere?

I don't have written assembly instructions. Recommend to look at the exploded view from the image gallery.

Oct 14, 2014 - Modified Oct 14, 2014


I downloaded the stl files and opened them in solidworks however there are no measurements and the program won't let me measure anything. I would like to recreate the files to allow for an 24 hour hand as well. Is there anyway to get the measurements from the files?

Thank you!


real old reply, i hope you have solved it! you have to specify in solidworks that you open .STL file, NOT "open all files" there should be a settings option and click it, a window should open and tick a box somthing along the lines of "solid file type" for some reason solidworks only imports STL files as 3D images. beware a few million polies though!

Nov 27, 2014 - Modified Nov 27, 2014
Trispectiv - in reply to lashrose

You can measure with Netfabb as a last resort.

Hi Lili, I don't know what's missing for Solidworks. Maybe you open the Blender-File, and re-export the data in another format. Maybe it is also related with the fact that Blender has no specific unit (mm, inch) set by default (I realized only recently, that it is possible to setup a unit in Blender). Most other applications will interpret the unitless numbers as mm. Cheers, Christoph

This comment has been deleted.

My local hardware shop doesn't have 1.5mm steel rods. I was hoping to update the model to have a 2mm rod in that place as well.

Is there a specific reason to use this thin rod? to reduce friction for instance?

More importantly: Which parts should I change? I cannot find the 1.5mm rod in the design...

The balance wheel has the thinnest rod, because it makes the largest and fastest movements and friction has therefore the biggest impact. It probably also works with 2 mm. Anyway carefully drilled holes accurately fitting with the rods are important.

Piano wire worked well for me. When I asked for it they said they didn't have it. I looked around in the Hobby area of LOWES and found a box of "assorted music Wire" in the hobby area. I bet home depot would have it also...

Amazing Design!

How much Filament in kgs do you guys used for the whole print?

Aug 25, 2014 - Modified Aug 25, 2014

Hey great design - do you have a good source for the steel rods - and would brass work as well?

I bet brass would be fine. It bends easier though so be careful. I bought mine from McmasterCarr. here are the part numbers.

5544T212 12L14 Carbon Steel Metric High-Tolerance Rod, 2MM Diameter, 1' Length $2.06 544T222 12L14 Carbon Steel Metric High-Tolerance Rod, 3MM Diameter, 1' Length $2.21 1265K14 Metric Miniature Type 316 Stainless Steel Drive Shaft, 1.5 mm OD, 200 mm Length $7.35

Thank You! Very much... I was having troubles finding the rods needed to assemble the clock...

You are a True Life Saver...

Really amazing clock. surely i'll make one when i have a 3d printer :( which type of printer is the best and cheapest? and what is the best 3d object viewer for printing?

Hey there, great clock! Do you think it would still work properly if printed at 50% size?

It potentially works, if your printer is accurate enough - e.g. gears will then have a module of 1.5mm and the teeth will be smaller than 0.3mm. Certainly you would need to adjust the balance wheel and the spring to get the right speed.

Hello Goofy!!

I have already printed the project and i think it's awesome!!! Anyway... II would like to perform some changes on my own and try to add some details in order to make it cooler... Would it be possible to have the original files in order to modify them? what software did you use?

thanks at advance

kind regards


Hi Sebastian. I did use Blender for the construction. The files are already downloadable. I do have a few additional temporary Blender-files for constructing various wheels (e.g. a single teeth, which is repeated n-times for building a gear). Not sure, if those files are useful for you.

Aug 5, 2014 - Modified Aug 5, 2014

What is the bed size required to print this at full scale?

Is the frame back (152mm x 92mm) the largest piece?

Yes, the frame has the largest dimension (the clock face with a diameter of 14 cm requires the largest area). There is a remix from dxhacksaw, where the construction is tiled in smaller pieces: http://www.thingiverse.com/thing:390221

for UP mini 3D printed mechanical Clock

What size axes are used for what gears/positions?

I am bamboozled how this magnificent contribution is not featured, yet we promote kids putting writing on their tyres and messing up the pavement... bravo thingiverse!

A few questions... has anybody tried this in ABS? I saw somebody asked...but didn't see an answer. Also, goofy, have you considered trying a pendulum, rather than a balance spring? I know that the BPH for a pendulum is about a 1/3 less, so it would require some tinkering. but while it may not directly increase the amount of time per wind up, I don't see a pendulum clock wearing out as quickly. Another question is, have you tried some of the more 'advanced' materials? Specifically HDPE and nylon. Both are used in gears and bearings because they're self-lubricating (low friction). HDPE would be more rigid, but nylon tougher (though it can get fairly rigid with proper geometry.) By the way, the aesthetics on it are superb. I can't wait to start printing it out.

I didn't try other materials. Also curious, if somebody else has experience with printing gears. A construction with a pendulum would of course be simpler, and probably much more efficient (less friction, better conservation of energy compared to the spring. But a pendulum isn't as fancy as a balance wheel - there are several 3d-prinded pendulum clocks around.

how do you exactly assemble the clock? Right now I am having trouble with the pulley and I can't seem to get it right. Please, somebody help me!!!

This looks gray and I will start this project. Thanks and a big compliment for keeping up your spirits while designing and redesigning and redesigning and.... Thomas

its really hard to get the geartrain working without too much friction. if I pull out the escapement mechanism, it still takes about 2kg to overcome static friction, but after that, a 1kg weight can keep it moving. Each gear part seems to turn very freely on the metal shafts and I have tried lithium grease to lubricate the shafts and to lessen any sliding friction on the gear teeth. even with 5kg, i cant get the escapement mechanism to maintain enough torque to make the clock tick. if I apply a moment by hand on the geartrain, I can get it ticking nicely, so I know the escapement is working. I just cant seem to get enough friction out of the system to make it work. how were you able to reduce the friction enough to make it work?

Maybe you also check friction with the anchor removed. I needed to sand a bit at the location, where the printer nozzle started or stopped, in order to have a smooth constant low friction at all angles

Can you check the tooth-play of the gears? A piece of paper should fit between. Depending on the slicing software, or the printer's characteristics, gears maybe are too large. Sometimes it's only the first printed layers, which is not as accurately printed. Also check the play along the axis: the frame shouldn't squeeze the gears.

The mesh between the gears was not a problem. I took everything apart again and went over every friction surface with a precision file. Every gear tooth, every point where the gears touch each other. I made sure that the first layer wasnt bulging. Made sure that every gear tooth has a nice smooth surface... That seemed to do the trick, because now the clock runs... sort of... now I am having some escapement issues. I think the anchor is not deflecting quite enough and sometimes the anchor doesnt quite catch, it slips back to the opposite side and then the wheel is out of sequence with the anchor. Here is a video showing what I mean: http://youtu.be/qzABfV0yUNMhttp://youtu.be/qzABfV0yUNM I have been watching your video over and over again. it looks like your anchor has more deflection than mine. does your anchor hit the stop on every tick? Mine only deflects about halfway before it stops on the wheel. I think if it deflected more it might be more reliable. Also, I havent added any screws to my wheel. Is it possible that if I added more mass to the wheel, it might kick the anchor out more on each tick and catch more reliably?

As I suspected, having more throw on the anchor helped with positive wheel engagement. I solved this by lengthening the anchor engagement point on the spring where it meets the anchor by 0.7mm. It doesn't get out of sync now, but I notice that it does seem to almost miss occasionally when the wheel is not moving quite fast enough. I might play with it a little more before I am done, but it runs a lot better now. here is a slightly out of focus movie with the new spring design. http://youtu.be/pyv9N_7sg3chttp://youtu.be/pyv9N_7sg3c If you dont mind, once i am happy with it I might post it as a remix in case other have a similar issue. I am guessing that your wheel is probably a slightly different dimension than mine, but I found this to be an easier fix to design.

Congratulations, you made it work. Actually I remember when I designed the anchor, I did a "proper" geometric solution, which theoretically should have worked. But in practice it didn't. The reason why it didn't work, wasn't a geometric construction mistake, it was the inaccurate printing process of my printer. To make it work, I had to stretch and bend the 3d-mesh of the anchor by 0.5 mm, and re-print it. Maybe your remix is now closer to the thing I originally designed. I'd like to encourage you to post it, because printers get better. (P.S. the background of your video appears very familiar with the things in my workshop)

ha! yep... lots of fun stuff in my workshop... the clock runs a little fast with the current setup. A minute on the clock is a about 3 seconds fast, probably because there seems to be a slight difference on one side of the wheel (or maybe i drilled it slightly off center). when it gets to that part of the wheel, it speeds up a little. I might need to reprint the wheel again to get it "prefect" http://youtu.be/C21lnu_enfQhttp://youtu.be/C21lnu_enfQ I am currently using about 3kg to get it working reliably. There is still some friction in there I need to get rid of... Thanks for posting this design. I really learned a lot building this. it really makes you appreciate the guys who used to build these things by hand back in the day!

hello I've just finished printing all but prurtroppo the clock does not work does not trigger the spring to the second count may depend on what you know .....? I'll explain the weight does not walk at all and therefore does not turn anything ....

OK, all built, but it wont run-it wants too.... How crucial are the screws in the balance wheel for the clock to run? Oh, and what a design. Fantastic.

Also every piece printed wonderfully except the Gear for the seconds....ARRGH what bear...took me probably 6 tries on an Ultimaker 2. Printed it at 25mm/s 0.06mm. very slow....

What went wrong?

I noticed your escapement balance wheel has screws placed in to the outer edge. Can you comment on that? I have printed the clock and am having difficulty getting the escapement to work for longer than a few "seconds". Your clock motion is very smooth and consistent. Absolutely wonderful. please help....

The screws are for fine-tuning the speed - a single turn on these screws maybe influences the speed by 1/100 of a second per clock-tick. There can go many things wrong, if the clock stops after e few seconds. Can you share a video? Maybe I can "debug" it.

is it possible to alter the gear ratio, or rig the single pulley into a series of blocks to increase the mechanical advantage so it will run a week on a single winding. I'd love to try this project...but if it only runs for 2 hours on a winding...I think that would be an issue for a functional clock.

What would happen if you adjusted the size of the rods to 1/8th"?

Friction will increase a bit, but as long as the larger rod has also a very smooth surface, you probably won't notice it.

My father was a clockmaker all his life, I need to show him this next time I visit, he will be amazed at the craftmanship involved here, well done!!

Is there anyway that we can set this up to run for more then just a few hours?

You could add another pulley and double the weight for double runtime.

The V2 ratchet runs almost half a day (see instructions). Maybe newer printers can print with more accuracy and less friction - it wouldn't be too difficult to design an even larger transmission.

Can I print it by ABS ?

Errr. A bit of a problem, What is the length of the screws I need?

Printing currently!

If I were to print this at a smaller scale would it still work? If so I'm sure the weight would have to be adjusted accordingly.

"dxhacksaw" made one 10% smaller, and it works. The weight has basically no influence on the speed. The clock speed is defined by the spring and the balance-wheel. The weight needs only be heavy enough to overcome friction. If you make the clock much smaller, you have to re-design the escapement - a smaller balance wheel or a stringer spring make the clock run faster.

Awesome! I think I will build it at full size to learn how it works, then try smaller. Almost done printing now. What did you use for the axles for the gears? I'm having trouble finding any small rods smooth enough.

You deserve many bravo! tooooo much work. I will make it ,but i have two question. Should i wind up every two hours??? It loose 1/4 second eveyry one hour?? 1 second every 2 hours. 2 seconds every 4 hours.....Around 10 seconds per day?? if yes it is too much

Maybe you can design an extension for an automated electric rewind ... ;-)

16 Soon to be leaving thingiverse because of Makerbot's behavior towards open source. Details: http://www.fabbaloo.com/blog/2014/5/25/has-makerbot-crossed-the-line-for-some-yeshttp://www.fabbaloo.com/blog/2...

U, sir, R a GENIUS.

Great job. Not only is the clock wonderful, but the video is very good, too.

Do you have an estimate of how much plastic is required?

The clock in total is approx. 150g of PLA. The garbage-box is almost 1kg. Nozzle is 0.5mm ... I've added some more printing details to the "instructions".

Sweet as, that's helpful thanks.

I read that your prints are getting too hot when printing smaller things. I use Slic3r to print my things and put these commands in the "layer change G-code" under the "Printer Settings" tab in the "Custom G-code" section. It makes it wait 5 seconds in between layers to give it time to cool: G91 ;go to relative mode G1 E-10 ;retract 10mm on extruder to prevent oozing G1 Z1 ;move up 1mm G4 P5000 ;pause for 5 seconds G1 Z-1 ;move down 1mm G1 E10 ;extrude 10mm G4 P500 ;give the filament some time, otherwise the slight latency makes it print nothing for the next 1mm G90 ;go back to absolute mode Also, if you're using PLA you might want to look into mounting a fan on your print head to help with the cooling. It makes a big difference.

Wow! THIS is awesome. I myself have made a wooden clock, all pieces (including all the gears) by hand with a jigsaw and appreciate the workmanship you have put into this. Very inspirational!

I've cleaned up the thing, added all the STL files, and even some building instructions. Hopefully this helps to really successfully print the thing. Have fun!

Cool project! Do you use the drum assembly thats in the blender files? it looks different than the video. I dont see the smaller planetary gears etc.

The planetary-drum visible in the blender file is a newer, more sophisticated version. The old rachet-drum is also in the blender file, but invisible. It's named "trommel...", and it also contains some more invisible temporary objects. I'm currently creating a clean version of the blender file, matching to the video.

Thanks TheGoofy, awaiting this with much anticipation. Great Work!

could it be possible to adjust the ratio on the weight gear so that it can run for 24 hours without rewind it? or as some old clocks have 2 of them?

This clock will run for a full week, if you hang it on top of a church tower with the weight on a long fishing line ;-) ... It's a problem of friction and robustness. With increasing the gear ratio by a factor of 4, you would need to increase the weight also by a factor of 4. The weight would then be 5-6 kg. I expect that the PLA structure would start to bend and friction in the main bearings would further increase so the theoretically calculated weight wouldn't be heavy enough. Definitely a construction change is needed. But instead of making the main structures more robust, I'd guess there is more potential in designing the escapement and the seconds-hand much lighter, and with less friction.

Yep, i'd had a 10lbs driving a clock that ran for 24 hours with about 4' of drop, after about a week the ABS had deformed enough the gears were binding and it wouldn't run reliably after that. http://fe2.net/projects/printableclock_v1/index.htmlhttp://fe2.net/projects/printa... Btw, good work. Nice to see someone else picking up the mantle of 3d printable gravity clocks.

A great resource for escapment mechanics and their respective efficiencies: http://www.nawcc-index.net/Articles/Headrick-EscMechanics.pdfhttp://www.nawcc-index.net/Art... It has fully drawn optimized escapment mechanisms and the theory behind it all in there. Interesting read :)

what is you had 2 weights like some old clocs had ? would it still put the combined weight at the same point?

The second weight of old clocks is usually for the striking mechanism. Not sure, if you mix that up. I don't expect that two weights for driving the same gears has an advantage over a single weight.

oh yes you are right.. the 2nd was for the bell / striker :-D So they clock as is can run for 24 hours or so, but at what height above the floor?

In the video, he says ~2 hours per 70cm of travel. 70x12=840cm.

The height for 24 hours is exactly 1250.023 cm - with the gear ratio and the drum diameter well defined, and knowing that the Minutes gear rotates "approximately" with 1 revolution per hour, it's simple mathematics (in the video I did only an estimation). Winding version 2 would only need 340 cm (see instructions).

nice... this now got a top place in projects to print

Brilliant! Blender FTW!

This is an extraordinary piece of work. And I really like that you've colour coded the parts to indicate their function. Just one question: how long will that spring last? I've covered this on my blog, http://3DGeni.us3DGeni.us here: http://www.3dgeni.us/3d-printed-clock/http://www.3dgeni.us/3d-printe... Thanks for creating such an inspired design.

Nice blog. ... how long will the spring last? ... good question. My clock is now 9 months hanging at the wall, and I let it run very rarely (the ticking makes my family nervous). But it still works as on the first days. I'd guess it did run in total maybe for 100 hours until now. I had expected that the ageing and deformation of the PLA makes the clock die after a couple of months.

What a great piece of work!

please please please can someone make STL's for this!!!

I added a remix with the STL´s. Have fun with it! ;)

Great, printing the Cyclone mill at the moment, this will be the next project! - Thanks very much!!!

Absolutely Awesome design, I'd start printing it now if I knew Blender. Thanks for sharing this design.

Bravo! What is the weight you're using with this?

1.2 kg nuts and bolts and other metal scrap

Great design! Can you please offer us the parts as STLs ?