Replicator Platform Heater PCB

by garyacrowellsr, published

Replicator Platform Heater PCB by garyacrowellsr Jan 19, 2013


A part of these Groups

View All

Liked By

View All

Give a Shout Out

If you print this Thing and display it in public proudly give attribution by printing and displaying this tag.

Print Thing Tag

Thing Statistics

6468Views 1669Downloads Found in 3D Printer Parts


The Replicator started out with the serious problem of failing HBP power connectors. In the process of failing and replacing the connector, the heater board is often damaged, mandating it's replacement as well. Plus, we've recently seen examples of the replacement 'red connector' also failing. As the Replicator fades into non-support by MBI there will be a need for a replacement HBP heater board that eliminates these problems.

This thing is the Replicator equivalent of what Dan Newman published for the TOM. (See ancestors.)

In addition, I recently made some extensive measurements of temperatures across the area of my stock HBP. What I basically found was that the corners and edges of the HBP were consistently 3-5 degC lower temperature than the central area of the platform.

I also discovered that one corner of my HBP is significantly cooler than the others. I'm suspecting unequal clamping force in that corner or something else that is resulting in poor contact.

This Thing, uses the rear center hole of this HBP in a 3-point leveling arrangement.


I sketched this up in a few hours following a short discussion on the Google Group. It was tested as a milled board that was worked pretty well, and now it has had a prototype sample run fabricated.

The trace dimensions and path have been placed nearly identically to the original Replicator board. I don't want go thru multiple rounds of prototypes, so I'm sticking pretty close to what is known to work. The changes I've made to the the board are as follows:

  1. The surface mount connector is replaced by a thru-hole equivalent. In addition, solder pads/holes are provided so that the high-current pins can be wired to an off board connector. This is accomplished by putting the connector on a 'tab' that extends outside of the original board outline. I'm pretty sure there is ample room on the Replicator for this connector mounting.

  2. No silkscreen on the heater surface. The objective is to keep the surface in close thermal contact with the platform plate.

  3. Copper around the mounting holes. Changing the board thickness at the clamping points doesn't sound like a good idea; the clamping force might bow the board.

  4. Copper fill on the heater side. This extra copper should make for a flatter surface and the additional contact area should aid in transferring heat into the plate. This can be done with a 12/12 mil trace/space, which is not a premium at most board houses.

  5. Nearly all of the trace corners on the original board are around the edges of the board. A square corner increases the effective trace width at the corner, which reduces the heat generated by that bit of trace, which may be contributing to the temperature gradient I observed. I've rounded the corners with a constant trace width. (Yes, it would be a tiny difference, if noticeable at all. But rounding was easy to do.)

  6. The heater trace width on the original board is a constant 1mm (except the trace corners, as noted). The resulting even heat generation across the board guarantees that the resulting heat flow will make the center of the board hotter than the edges. A potential solution to this is to use different trace widths in 'zones' of the board. The attached .jpg highlights the zones. It would be easy to get carried away with this, so I've only varied the widths by a minimal amount as a start. The traces in the yellow area are 1mm; in the center zone they are 1.05mm, and at the corners/edges 0.95mm. If I want greater variation, it will be easy to go back and select and alter the trace widths in the zones. (What appears in the .jpg to be uneven horizontal trace space/fill is an artifact of rasterization; everything is nice and even on the board.)

  7. The surface mount LED on the original board is pretty useless; I've never seen mine (not even sure if its populated). So with a location available on the connector tab, I used a thru-hole LED that should be visible when the printer is in operation.

  8. Extra area on the connector tab is copper filled in a small attempt to add cooling to the current-carrying pins.

  9. The connector tab is offset from center - this might allow a tiny price break in panelizing the board. (Unlikely, but possible.)

UPDATES: 1/19 =========================================

  1. A bottom edge center hole has been added, in case someone wants to implement a 3-point leveling system by drilling their aluminum plate.

  2. The connector tab has been enlarged slightly and a hole added so the user can zip tie soldered wires in place.

  3. The LED has been moved, better to accommodate a printed cover placed over the connector area. I've added notches for a cover to latch onto.

  4. I've dimensioned the board, but this still isn't a complete fab package.

  5. Tightened up the heater traces around the mounting holes and added some trace in areas that were previously blank. This should help to reduce cold spots around the holes.

  6. The large pads near the thermistor have been retained 'cause I don't wanna be the new monkey that gets beat up trying for the banana.

UPDATES: 1/20 =========================================
Just cleaned up a few things, and added the rest of the Gerber files. There might be some more touch up, but the only thing incomplete is fabrication Gerber file; it still needs some fabrication notes.

UPDATES: 1/23 =========================================
Final touch-ups; should be good to go.

UPDATES: 1/30 =========================================
[see pic] Milled a test board that came out very well. It was done on 1oz. copper and came out to about twice the resistance of an MBI board, so it's pretty certain their board is in 2oz copper. I'll be milling a board in 2oz next, for assembly and a practical test.

UPDATES: 2/15 =========================================
I got some 2oz copper and milled a new board. The resistance came out to 5.1 ohms. Installed in my replicator it appears to work normally but I still have some measurements to take. Stay tuned.

UPDATE: 3/21/14 =======================================
I've been using the fabricated version of this board for about nine months now, and it works very well. The three-point leveling that it allows is perfect. I did some temperature measurements, and there is still a lot of temperature gradient towards the board edges, so I wasn't aggressive enough in varying the trace widths. I might work up a new version if someone wants to try it, but I doubt that I'll have a new board fabricated, as this one is working well. One point of caution, 24V is exposed on the connector pins at the back of the board, and it would be easy to short them with a metal tool. I strongly suggest that they be covered, at least with tape; a printed cover would be better.

Heh, I had to add a random .scad file, 'cause Thingiverse doesn't recognize my Gerber files as being 'real'.

More from 3D Printer Parts

view more

All Apps

Upgrade this Thing with Thingiverse Apps

Tools and Utilities

Repair, slice, or enhance this Thing

Auto-magically prepare your 3D models for 3D printing. A cloud based 3D models Preparing and Healing solution for 3D Printing, MakePrintable provides features for model repairing, wall thickness...

App Info Launch App

Where did you get your bed made? I would very much like to find a good replacement for my HBP as I am on my 2nd factory unit and it's failing just as the 1st did. Thanks!

Would it be possible to use http://oshpark.comoshpark.com to get a board made? I don't do board manufacturing and I'm curious on how to know if they (or someone else) can make it and do the 2 mil copper clad.

I just realized they don't do anything with 2mil. Oh well. Now to try and track down where I can get a board made.

How did it turn out? I am thinking of making my own custom HBP larger (300x150) to use the ditto capabilities of Sailfish. I would really appreciate an update on your progress before I get too far along. I am thinking of using your method of varying the trace width in combination with slightly larger gaps in the center and smaller on the edges. I think I can get by without actually increasing the overall length by too much.

I've been using the final milled board for weeks and it seems to work well, except that the resistance is a bit high; heating takes a few minutes longer. There is a fabricated prototype order in progress - boards in a couple of weeks I think.
300x150? For a glass build plate I presume? Bonded with thermal adhesive or thermal pad. I could stretch this easily and eliminate the extra holes, adjust the trace width for the extra length. Would take an hour or two.

I have a test piece of tempered glass just sitting on top of the original HBP. The extruders print OK on each side of the overhang, or with an added 33mm on single extrusion. The heat seems to transfer quickly without any adhesive (other than gravity and a couple of binder clips). The center of the plate is lots hotter than the edges, and no heat creeps out into the "wings". I think if the trace was very closely packed around the edges and spaced further apart in the center (where the thermistor is) that the plates would heat more evenly, and retain the temperature better.

I recently did replace the HBP and the harness on my replicator.
when I had the HBP disassembled I did this mod.
I had a sheet of copper (thin stuff they sell for crafts) cut it to size and cut out spaces for the screws.
I sandwiched the copper between the PCB and the aluminum.
This helps to make the temperature conduction improve (hopefully a more even temp)

I've got a sheet of thermal interface material here that I got from Digi-Key that I'm going to try. I'll report on what, if any, difference it makes.

I can report the copper seemed to have a effect on equalizing the temp.
(at least my temp laser gun (harbor freight so you know it's low end) sees a even temp)

Personally I only did it because i already had my HBP apart and
had copper sheet on hand. I can't attest to it making a big difference in
ABS crack minimization and part adhesion to HBP. I just felt like it was a logical upgrade that
was not inconvenient under the circumstances.

I like where you're going with this and I have a few suggestions.

  1. Make the tab stick out a little more or move the through holes. Right now they are pretty close the the aluminum build plate and a stray wire or poor solder job by someone could make for a bad experience.

  2. On the tab I would like to see two screw holes, one on each side. This would allow someone down the line to make a cover and have a way to mount it or a place for someone to zip-tie their wires for strain relief.
  3. Add one hole along the front center so if people want to do 3 point leveling they just need to drill the aluminum plate.

Nice I like the changes you've done. I'd buy one like this.